
Draf
t

Large Synoptic Survey Telescope (LSST)

DM QA Status & Plans

Simon Krughoff and John Swinbank

DMTN-074

Latest Revision: 2018-06-14

D R A F T

Abstract

This document will:

• Describe the current status of “Quality Assurance (QA)” tools, in the broadest
sense, currently provided by Data Management;

• Sketch out a set of common use cases and requirements for future QA tool and
service development across the subsystem.

It is intended to serve as input to planning for QA currently being undertaken by
the DM Leadership Team, the DM System Science Team, and the DM QA Strategy
Working Group (LDM-622).

LARGE SYNOPTIC SURVEY TELESCOPE

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

Change Record

Version Date Description Owner name
1.0 (81eeb70) 2018-06-14 First release. Krughoff & Swinbank

D R A F T ii D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

Contents

1 Introduction 1

2 Current Tooling 2

2.1 Alert Production (AP) . 2

2.1.1 ap_pipe and ap_verify . 2

2.2 Data Release Production (DRP) . 3

2.2.1 afwDisplay . 3

2.2.2 ci_hsc . 3

2.2.3 Automated static plots with pipe_analysis 4

2.2.4 Dynamic “drill-down” plots . 4

2.2.5 Large scale scientific analysis of HSC data 5

2.3 Science User Interface & Tools (SUIT) . 5

2.3.1 Firefly . 5

2.4 Science Data Archive & Application Services (DAX) 6

2.4.1 Database intgration testing . 6

2.4.2 Database performance testing . 6

2.4.3 DAX services . 7

2.4.4 lsstDebug . 7

2.5 Data Facility (LDF) . 7

2.5.1 Regular manual reprocessing of HSC data 8

2.6 Science Quality and Reliability Engineering (SQuaRE) 8

2.6.1 Continuous Integration services (Jenkins) . 8

2.6.2 Unit test framework . 9

2.6.3 Stack Demo . 9

2.6.4 lsst.verify . 10

2.6.5 SQuaSH . 10

2.6.6 Validation packages . 10

2.6.7 Hosted Jupyter notebooks . 12

D R A F T iii D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

3 Requested Functionality 12

3.1 Developer Support . 13

3.1.1 Test datasets . 13

3.1.2 Visualization, plotting and debugging frameworks 13

3.1.3 Support for running and debugging at scale 13

3.1.4 Notifications and dashboards . 14

3.2 Code quality . 14

3.2.1 Unit tests . 14

3.2.2 Integration tests . 14

3.2.3 Static analysis, code linters, etc . 15

3.3 Metric verification . 15

3.3.1 Performance analysis . 16

3.3.2 High-level metric tracking . 16

3.3.3 Ad-hoc metric calculation and tracking . 16

3.4 Science validation . 17

3.4.1 Drill-down . 17

4 Glossary 18

D R A F T iv D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

DM QA Status & Plans

1 Introduction

Across the Data Management subsystem, we (ab)use the term “QA” to refer to various as-
pects of ensuring that things are “working properly”. This spans a wide gamut of applications,
including, for example:

• Does our code correctly compile and pass its unit tests?

• Can we demonstrate that the DM system meets Key Performance Metrics (KPMs) and
satisfies other aspects of our requirements documentation (LSE-29; LSE-30; LSE-61)?

• Do we properly understand the operation of our scientific algorithms, both individually
and operating in concert? Can we identify when the results they produce are scientifi-
cally lacking?

• Do we provide tools to developers, scientists and other members of the DM team to
help them understand and debug the code and systems they are constructing or using
as part of their work?

• How do we track computational performance across the system, from execution times
of scientific algorithms to the scaling properties of database queries?

• Canwemonitor systemswithin the LSST Data Facility to ensure that they are operational
and performing correctly?

• Can we identify problems which stem from bad data, as distinct from bad software or
services?

To date, the DM team has built a number of tools which address parts of these problems.
However, a coherent, unified vision for how they fit together remains lacking. This document
will1 catalogue the tools that are currently available, will identify use-cases and the require-
ments arising from them, will determine to what extent the existing tools satisfy those re-
quirements, and will suggest directions for future development.

1Ultimately; the current draft does not yet address all aspects of this scope!

D R A F T 1 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

2 Current Tooling

We begin by cataloguing the tooling which has been developed to date, or which will be de-
ployed in the short term2. These tools are listed by the team within DM which originated or
leads the development of them.

2.1 Alert Production (AP)

2.1.1 ap_pipe and ap_verify

Development within the Alert Production group has focused on the construction of an instru-
mented “end-to-end” alert production pipeline.

The pipeline code itself lives in the lsst-dm/ap_pipe package in GitHub. This provides proto-
type implementations of major alert production pipeline components (single frame process-
ing, image differencing, source association), and a control script to string them together3

The lsst-dm/ap_verifypackage is a companion to ap_pipe. ap_verify effectivelywraps pipeline
functionality in a form that is intended to be appropriate for regular testing in CI (§2.6.1). As
such, it provides:

• A standardized way of defining “dataset” packages, each of which provide a curated test
dataset;

• The facility to ingest data into Butler repositories suitable for processing with LSST stack
tools;

• Facilities for instrumenting and calculating metrics based upon running pipeline code;

• Submission of calculatedmetrics to SQuaSH using the lsst.verify system (§§2.6.5 & 2.6.4).

Based largely upon the experience gained in building ap_verify, the AP team has put consid-
erable thought into the appropriate mechanisms for extractingmetrics from running pipeline
Tasks. This has resulted in DMTN-057, which describes a number of possibilites for how
this might be standardized. At time of writing, none of these proposals have been formally
adopted by the project.

2That is, which we can count on becoming available shortly, regardless of any future course corrections which
result from this document or other discussion.

3At time of writing, this system is being migrated to use the DM-standard CmdLineTask framework.

D R A F T 2 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

2.2 Data Release Production (DRP)

2.2.1 afwDisplay

The lsst.afw.display framework provides a Python API for displaying and manipulating im-
ages and overlaying information source lists based on LSST stack primitives. The code is
backend-agnostic — that is, the developer writes to a device-independent common API, and
the display can appear on one of a number of image viewers. Back-end implementations are
currently available for SAOImage DS94, Matplotlib5, Firefly6 (§2.3.1) and Ginga7. Adding more
backends is relatively straightforward. However, the goal of being backend-agnostic may be
in conflict with taking advantage of special capabilities or functionalities offered by particular
tools.

It is worth noting that there is no afwDisplay equivalent for working with figures: pipeline
developers instead tend to access Matplotlib directly.

The afwDisplay code does not appear in the work breakdown structure; no team has formal
responsibility for it. However, the DRP team are the primary maintainers. The teams within
science pipelines all make use of afwDisplay.

2.2.2 ci_hsc

The ci_hsc package provides a curated set of HSC data and a SCons8-based system for pro-
cessing it through a DRP-like workflow. The resulting data products are automatically sanity-
checked: that is, we establish that the expected outputs have been produced and contain a
plausible number of objects, reasonable selection of objects used for PSF determination, and
so on, but we do not do detailed analysis of source measurements or astrophyisical plausibil-
ity. This means that ci_hsc provides an excellent way to catch regressions in pipeline machin-
ery and integration, but is not sensitive to more subtle algorithmic issues.

ci_hsc may be run standalone by individual developers — it takes around three hours — and
is periodically run by the CI system (§2.6.1).

4https://github.com/lsst/display_ds9
5https://github.com/lsst/display_matplotlib
6https://github.com/lsst/display_firefly
7https://github.com/lsst/display_ginga
8http://www.scons.org/; note that the choice of SCons here is ingenious — it provides many desirable features

in a workflow system — but also completely non-standard across the rest of the codebase, and can make this
package hard for developers to engage with.

D R A F T 3 D R A F T

https://github.com/lsst/display_ds9
https://github.com/lsst/display_matplotlib
https://github.com/lsst/display_firefly
https://github.com/lsst/display_ginga
http://www.scons.org/

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

2.2.3 Automated static plots with pipe_analysis

The pipe_analysis package provides scripts which inspect a repository of processed data and
generate static plots of the distributions of scientifically relevant quantities. These may be
manually inspected to demonstrate the internal consistency and fidelity of photometric and
astrometric measurements on the visit-stage and coadd-stage catalog outputs. They also can
be used to compare catalog outputs from two different reruns

Theplots generatedby pipe_analysis have been refined, andnewplots added to the collection,
based on several years of investigating issues encountered by the DRP group in processing
HSC data.

Figure 1: Examples of static plots generated by pipe_analysis, courtesty of Yusra AlSayyad.

Examples of plots produced by pipe_analysis are shown in Figure 1. Note that this figure
shows but two of many plots generated.

2.2.4 Dynamic “drill-down” plots

Tim Morton (Princeton) is currently building a toolset that offers the ability to create plots of
tracts-worth of catalog data to find patterns and pathologies. These interactive and linked
visualizations, inspired by the pipe_analysis plots (§2.2.3), are created and explored live in a
Jupyter notebook environment.

The current system plotting of multiple quantities of interest, linked to each other and to sky
maps of each quantity; scanning through sky plots of a quantity from each visit contributing

D R A F T 4 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

to a coadd; and in-notebook quick-look of images corresponding to catalog data points.

This toolset is being designedwith scalability inmind, and is easily capable of handlingmillions
of datapoints.

2.2.5 Large scale scientific analysis of HSC data

Approximately annually, a derivate of the LSST codebase is used to process the full collection
of data from the HSC Strategic Survey Program. This is coupled with an intensive QA effort
(using several of the tools listed above, in addition to pipeline production scientists in Japan
looking at the data) to verify that new desired features are working as expected and that the
scientific performance of the pipeline has not regressed, before the results are released to
the HSC community. These data releases form the basis of scientific analyses by the HSC
collaboration, which in turn identify issues that may go unnoticed during pipeline processing.

Processing the entire survey dataset in this way enables the identification of edge and corner
cases that may otherwise go unnoticed. Unfortunately, the pipeline outputs are proprietary
until they are released to the world a couple of years later, but members of the DRP team
at Princeton can access them and use the results to trigger development and bug-fixes using
public data.

2.3 Science User Interface & Tools (SUIT)

2.3.1 Firefly

Firefly is the IPAC’s “advanced astronomy web UI framework”. It provides data browsing, im-
age viewing, and plotting functionality, and will be the focus of the “portal aspect” of the Sci-
ence Platform.

Firefly is a client-server application; a Java-based server component is colocated with the data,
and is accessed through a Javascript based UI in the user’s browser. At various times, instal-
lations of Firefly have been made available to DM developers on project-provided compute
hardware9, but these are not regularly maintained or accessed by pipelines developers. A
firefly server is deployed with every instance of the JupyterLab environment (§2.6.7).

Firefly interfaces to the standard image display system used by the LSST pipelines (§2.2.1) are
9i.e. lsst-dev01.ncsa.illionois.edu

D R A F T 5 D R A F T

https://github.com/Caltech-IPAC/firefly

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

available.

The functionality available from Firefly may be useful to other DM teams, in particular provid-
ing visualization and plotting services in support of algorithm development and investigating
the properties of data releases. However, the SUIT team is not scoped to deliver capabilities
to the rest of DM: they are focused on developing Firefly to meet the requirements of the
Science Platform. Other parts of DMmay, of course, benefit from the tools developed for this
purpose.

2.4 Science Data Archive & Application Services (DAX)

2.4.1 Database intgration testing

Qserv has a multi-node integration test which spins up several shard servers and a master
via containers, loads a test dataset, and issues a suite of queries checking against known/ex-
pected results. This is run automatically using the Travis CI service on all changes.

Unfortunately, the nature of this test and the Travis CI service renders it complicated and
brittle; these tests are often broken for reasons unrelated to a developer’s changes. The same
test can, however, be run manually by individual developers before merging.

Larger-scale QServ integration tests are carried out periodically at CC-IN2P3 and the LSSTData
Facility. These consist of deploying the containerized Qserv system across a large cluster and
executing queries against large-scale test datasets. These tests are currently controlled by a
collection of scripts, but work is underway to move to a Kubernetes10-based infrastructure.

2.4.2 Database performance testing

Performance testing for qserv is performed annually, on synthetic data sets that are on a glide
path to the scale of LSST DR1. The test procedure is described in LDM-552; examples of the
reports produced include DMTR-13 and DMTR-16.

Performance constraints are particualrly an issue for the Level 1 (Prompt) database proto-
type. A simulator was developed to test its performance at various scales. This simualtor is
described in DM-6365. It is not regularly run as part of Continuous Integration (CI).

10https://kubernetes.io

D R A F T 6 D R A F T

https://travis-ci.org
https://jira.lsstcorp.org/browse/DM-6365

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

2.4.3 DAX services

The current development version of the imgserv service is shipped with an integrated test
suite of several dozen queries, which can be quickly executed against the service via a built-in
CLI, running against either a small test dataset (included with the code) or the larger data sets
currently deployed in the Prototype Data Access Center (PDAC). This same test suite can also
be executed directly over HTTP11 to validate the top-end web service layers.

The test suite is not yet integrated with the CI (§2.6.1) system, but in principle there is no
reason why it could not be.

This testing strategy has been found very successful for imgserv, and it will be extended to
other DAX services as development continues.

2.4.4 lsstDebug

The author of an algorithmic task knows which intermediate data products and diagnostic
plots are useful for answering questions about its behavior. The lsstDebug framework allows
developers to insert code into their Tasks that displays images (using standard DM primitives)
and makes plots that are only run when the CmdLineTask is invoked with the --debug parame-
ter.

Historically, the lsstDebug system has been poorly documented and the subject of some con-
fusion. There are no published guidelines about appropriate ways to use it or expectations
of how developers should instrument their Tasks.

Note that the lsstDebug system did not originate with the DAX team (and, indeed, it’s quite
likely that no member of DAX has ever used it), but it falls within their remit as part of the
“task framework”.

2.5 Data Facility (LDF)
11Using a client such as cURL; https://curl.haxx.se/.

D R A F T 7 D R A F T

https://curl.haxx.se/

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

2.5.1 Regular manual reprocessing of HSC data

Every two weeks, members12 of the LDF team reprocess some three tracts of HSC data, com-
prising the “RC2” dataset13, through the currentweekly release of theDRPpipeline14, including
post-processingwith the pipe_analysis system (§2.2.3). Any substantive changes in processing
outputs15 are flagged for the attention of the DRP team. The results of the four most recent
processing campaigns are retained for reference.

In addition, Data Facility staff periodically, on request from the DRP team, reprocess thewhole
of the first HSC public data release (“PDR1”) on the Verification Cluster.

2.6 Science Quality and Reliability Engineering (SQuaRE)

2.6.1 Continuous Integration services (Jenkins)

SQuaRE provides and maintains the CI system which regularly builds and tests much of the
DM Science Pipelines and Qserv codebase. The Systems Engineering simulations team also
take advantage of the same system; it is not used by the other teams within DM.

The CI system is widely used for a number of related purposes, including:

• Testing of code by developers before it is merged. Primarily this runs all unit tests in all
packages, but can also run more comprehensive integration tests;

• Executing metric collection systems (e.g. validate_drp, §2.6.6);

• Building and preparing code for public and internal release. This includes packaging
both source and binary releases and building Docker images for use in the JupyterLab
environment §2.6.7.

12Principally Hsin-Fang Chiang
13The RC2 dataset is fully defined in DM-11345.
14Currently, this means makeSkyMap.py, singleFrameDriver.py, mosaic.py, skyCorrection.py, coaddDriver.py and

multiBandDriver.py.
15For example, changes to CCDs logged as failing certain pipeline steps, or new errors or exceptions logged

during pipeline operation; we do not consider changes to the contents of the science data products “substantive”
for this purpose, as long as those data products are generated as expected.

D R A F T 8 D R A F T

https://ci.lsst.codes
https://jira.lsstcorp.org/browse/DM-11345

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

2.6.2 Unit test framework

All code written for DM is expected to be accompanied by appropriate unit tests16.

The ideal unit test demonstrates that an individual “unit” of software (a class, a function, etc)
is operating correctly. In practice, many tests used by DM go well beyond this, for obvious
reasons: it’s hard to demonstrate that the ProcessCcdTask class is operating correctly without
relying on classes for loading data, performing instrument signature removal, source detec-
tion and measurement, calibration, and so on. As a natural result of this, DM’s unit tests are
often (ab)used to provide mini-integration tests. While this conflation of integration and unit
testing provides convenient test capabilities which are not easily available elsewhere, it leads
to fragility in the test suite, andmakes it impossible, in general, to testmodules in a standalone
way: any package needs all of its dependencies available to execute its test suite.

Although the creation of unit tests is not a responsibility of SQuaRE, the technology used
to implement them, and their regular execution as part of the CI system, is (although we
note that much of the current test harness has been developed in close cooperation with the
Architecture team).

2.6.3 Stack Demo

The Stack Demo, lsst/lsst_dm_stack_demo, contains a curated selection of SDSS data, a script
which executes single frame measurement on that data, and a set of precomputed expected
outputs. The results of measurement are compared with the expected values, and an error
is thrown if any values (including number of detected sources, their positions, and assorted
measurement algorithm results) are different.

Note that the expected values are the results of some previous processing run. There is no
ground truth for this data, and these results have not been rigorously analysed to demon-
strate that they are correct. In short, this procedure can verify that changes being made do
not substantially change the results of processing, but cannot verify that the results are in-
trinsically correct.

The Stack Demo is available for end users to run standalone, but it is also automatically run
as part of most CI (§2.6.1) jobs.

16Refer to the Unit Test Policy in the Developer Guide, but note that our implementation does not follow the
terminology it uses

D R A F T 9 D R A F T

https://developer.lsst.io/coding/unit_test_policy.html
https://developer.lsst.io

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

2.6.4 lsst.verify

lsst.verify is a framework for packages thatmeasure software and data qualitymetrics. Amet-
ric can be any measurable scalar quantity; some examples are in the LSST Science Require-
ments Document (LPM-17), though packages can also define ad hoc metrics. Measurements
made through lsst.verify can be uploaded to LSST’s SQuaSH monitoring dashboard (§2.6.5).
The intention behind the development of lsst.verify is that it serve as the primary mecha-
nism for verifying LSST pipelines17.

2.6.5 SQuaSH

SQuaSH is a metric aggregation and display service. It provides time-series visualization of
selectedmetrics derived from LDM-502. Metics may be submitted to SQuaSH using lsst.verify
(§2.6.4). These metrics are stored and tracked, making it possible regression alerts to be is-
sued via several mechanisms including Slack notifications18. All metrics measurements are
accompanied by the associated code changes to aid in identification of relevant packages in
the event of a regression.

To date, the primary use of SQuaSH has been to follow a selection of KPMs. However, the
framework is not restricted to only KPMs: any metric defined in lsst.verify.metrics can be
uploaded to SQuaSH. SQuaSH then serves as both a database and search engine for metric
measurements as well as a visualization platform for those measurements.

For a selection of the measuremnts corresponding to select KPMs, specialized visualiztions
have been developed, but it is also possible to query the metric database19 for other mea-
surements to feed to ad hoc visualizations. The intention is that SQuaSH will be used by de-
velopers to track low level metrics on their particular project as well as higher level Subsystem
and Project level metrics.

SQuaSH is described in SQR-009.

2.6.6 Validation packages

The validate_drp package will automatically run single-frame processing on a dataset, calcu-
late a subset of metrics derived from the Science Requirements Document (LPM-17), upload

17The process of validating the pipelines in a scientific context are left to the DM validation team.
18Note that this capability does not seem to be widely advertised or understood.
19Using GraphQL.

D R A F T 10 D R A F T

https://github.com/lsst/verify
https://squash.lsst.codes
http://graphql.org

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

the results to SQuaSH20

(§2.6.5), and evaluate expected analyticmodels for photometric and astrometric performance
following Ivezic et al. (2008).

It is worth noting that, although these packages are referred to as “validation” packages, in
fact they form part of the verification process, and will likely be renamed in future.

Currently, validate_drp supports the following metrics21:

• Relative astrometry

– AM1, AF1, AD1

– AM2, AF2, AD2

– AM3, AF3, AD3

• Photometric repeatability

– PA1, PA2, PF1

• Residual PSF ellipticity correlations

– TE1, TE2

The focus, to date, has been on testing data release algorithms, but the SQuaRE team intends
to extend the system to address prompt processing and some lower level systems (e.g. Joint-
cal).

In addition, three curated datasets for usewith validate_drp are provided. These are based on
CFHT (validation_data_cfht), DECam (validation_data_decam) and HSC (validation_data_hsc).
These datasets are reguarly reprocessed by the CI system (§2.6.1) and the results uploaded
to SQuaSH.

Note that the validation_data packages contain both “raw” data and processed data which has
been ingested to a Butler repository. There is no regular routine for updating that processed
data in light of changes to the software; developers have occasionally found it unclear or
confusing whether this data is actually supposed to be usable or useful22.

20The master branch of validate_drp currently uses an older system for calculating and transmitting metric mea-
surements, there is currently a complete port to the lsst.verify system on the verify_port branch.

21From etc/metrics.yaml of validate_drp w.2018.07
22In this context, note RFC-243 which requests the regular generation of “a pipeline output dataset”.

D R A F T 11 D R A F T

https://jira.lsstcorp.org/browse/RFC-243

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

2.6.7 Hosted Jupyter notebooks

The JupyterLab environment is a complete, containerized system for spinning up JupyterNote-
books in a hosted environment. The environment comes complete with pre-compiled recent
versions of the stack; currently, these are the three most recent weekly releases, the two
most recent daily releases, and the most recent major release. The JupyterLab environment
provides persistent personal storage, whichmay be used to customise the user’s personal en-
vironment, and shared storage, which can be used for exchanging data, etc. It also provides
commonly expected utilites like a shell prompt as well as a text editor.

Currently there are three deployments; all of these target a focused user community, rather
than widespread. These are:

• The DM team developing the JupyterLab system itself;

• The Systems Engineering team, as they begin commissioning exercises;

• The Education & Public Outreach team.

Since these are currently hosted in the on commercial “cloud” systems, since they are rela-
tively small; they are all trivially re-deployable to a project hosted cluster resource running
Kubernetes when such a resource becomes available.

3 Requested Functionality

In this section, we briefly enumerate functionality that has been requested from across the
project under the banner of “QA”. We will consider four broadly separate “regimes” in which
QA procedures of one sort or another are relevant:

Developer support Provide developers with the tools they need to work quicky and effec-
tively when developing scientific algorithms and/or other core pieces of the system.

Code quality Ensure that our code is buildable, executable, and maintainable.

Metric verification Demonstrate that we can reliably execute code at scale and track its per-
formance against predefined targets.

D R A F T 12 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

Science validation Check that the results of processing are scientifically useful, and charac-
terize all the data products produced.

This brief sketch is not intended to be comprehensive: for a detailed consideration of DM’s
sdesires, requirements and future plans for QA, refer to forthcoming report from the QA
Working Group (DMTN-085).

3.1 Developer Support

3.1.1 Test datasets

When writing code, it is essential that developers have low-friction access to test datasets
from a variety of instruments.

These datasets must be well understood, in terms of their origin and properties.

It is convenient that such datasets should be available as raw (unprocessed) data, but also
that intermediate and final data products from various stages of pipeline processing bemade
available. This facilitiates testing of algorithms which are only relevant to later parts of the
pipeline or analysis codes (e.g. Jointcal, the Science Platform) without the need for time or
expertise to rerun basic reduction steps.

These processed data products must be kept up-to-date: they should always correspond to
the products that would be produced by the current state-of-the-art pipeline.

3.1.2 Visualization, plotting and debugging frameworks

Although afwDisplay (§2.2.1) goes some way towards addressing needs for image display,
there is no equivalent for plotting or displaying catalogue data.

The lsstDebug system for debugging Tasks is poorly documented and badly understood, and
— worse — expectations for how debugging information should be collected are unclear.

3.1.3 Support for running and debugging at scale

Developers request more support with running at scale on e.g. the Verification Cluster, and,
crucially, understanding the results of those runs. Current debugging techniques consist of
little in the way of status information, reams of unstructured logs, and extensive use of grep.

D R A F T 13 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

3.1.4 Notifications and dashboards

Many of the systems being described or requested rely on some analysis of the performance
of code being proposed by someparticular developer against standards for code quality, algo-
rithmic correctness, performance, etc. Wherever possible, the results of these checks should
be presented to developers automatically (e.g. by Slack and/or e-mail notification), and deliv-
ered in a clear and consistent way (rather than requiring developers to navigate and integrate
information from multitudinous chatbots, websites, and so on).

3.2 Code quality

3.2.1 Unit tests

Extending unit test coverage and usability protects all developers from code being broken by
changes elsewhere in the stack.

Writing test code that covers complex systems (e.g. Tasks, display frameworks) can be awk-
ward: better guidance, standards or frameworks for doing this would reduce the workload
on the developer.

The Developer Guide should reflect current best practice and expectations in respect of test-
ing.

The overloading of unit tests to act as integration tests (as discussed in §2.6.2) may contribute
to making tests slow and hard to work with. Stricter guidelines for making unit tests more
focused, together with better integration testing facilities, may help to address this.

3.2.2 Integration tests

Integration tests for major DM components should be run regularly. These would likely in-
clude (at a minimum) separate, “end-to-end” tests for each of the alert production and data
release production systems, together with other major components of the system (e.g. alert
distribution, databases). Coverage should be tracked, so that we understand which aspects
of the system are being tested and which are not23.

Integration tests are not responsible for scientific validation of data products. However, they
23This will include e.g. which Tasks are not executed by any integration tests because they are disabled by

pipeline configuration.

D R A F T 14 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

should track all other aspects of execution. This will likely include:

• Successful execution (the code does not abort or fail);

• Generation of all expected data products;

• Significant changes in log messages (e.g. new warnings or errors being logged);

• Changes in data processed, rejected, etc (e.g. some CCDs that previously passed now
fail);

• Calculation of metrics describing the results.

Note that integration tests may be executed in (at least) two situations:

• Individual developers wish to check their code before a merge;

• The current master branch, and any maintained release branches, should be regularly
exercised to ensure that no regressions have been merged.

Note that integration tests which developers are expected to run before merging to master

must be (relatively) fast to avoid increasing developer friction.

Checks for regression on master should be treated with the appropriate gravity: they should
result in notifications (§3.1.4) to responsible individuals, and ultimately be escaled to e.g. the
DM Project Manager if they are not addressed.

3.2.3 Static analysis, code linters, etc

A variety of other tools may be applied to identify potential issues or coding standards viola-
tions. While these may often be effective in improving quality, care must be taken to ensure
both that they don’t introduce excessive churn (making e.g. Version Control System (VCS)
history hard to follow) and that the benefits gained are worth the implementation costs.

3.3 Metric verification

D R A F T 15 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

3.3.1 Performance analysis

Execution time, under controlled conditions24, should be tracked for all time-sensitive areas
of the codebase.

This will obviously include high-level summaries of the time taken to execute major pipeline
components or database queries (whichmust be tracked in order to satisfy high-level require-
ments). However, it must also make it easy to track the impact of changes to individual algo-
rithms or other components, and to provide feedback to developers if their changes introduce
performance regressions.

3.3.2 High-level metric tracking

KPMs derived directly from high-level requirements documents (LPM-17; LSE-29; LSE-30, etc)
are not directly applicable to the DM codebase, since they characterize the performance of
the LSST system as a whole. However, the Subsystem (presumably under the guidance of
the System Science Team (SST)) should define, and rigorously track our performance against,
equivalent quantities that can be well-defined in the context of DM (for example, measure-
ments made on simulated or precursor datasets).

Actively tracking performance is key. This could take the form of notifications (§3.1.4) to key
individuals (e.g. the DM Project Manager, DM Subsystem Scientist, DM Pipelines Scientist,
T/CAMs of relevant groups) on any regression, or a weekly meeting of key personnel to review
collected measurements.

Ultimately, successful verification and delivery of the DM Subsystem is predicated on hitting
predefined targets in all of these metrics, and the DM System Requirements (LSE-61) should
be updated to reflect this.

3.3.3 Ad-hoc metric calculation and tracking

While somemetrics, as described in §3.3.2, should be regularly tracked under controlled con-
ditions on specific datasets, there is also a need for other metrics to be calculated and —
potentially — tracked.

There are a number of considerations here:
24We might consider whether AWS instances, or other shared hardware, qualify.

D R A F T 16 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

• Developers will wish to execute code against arbitrary datasets and obtain a high-level
summary of its performance. Such metrics might be tracked in the short term for devel-
oper convenience, but varying compute platforms, datasets and algorithmic implemen-
tations will render them of little value for long-term monitoring.

• Some ad-hoc metrics should be tracked indefinitely. However, they will then require
that the platforms and datasets upon which they are being tracked are held constant to
ensure that the values being recorded are comparable with earlier measurements.

• Interfaces for defining metrics should be made available to developers.

• The types of metric being collected should be considered. From use cases collected to
date, it’s not immediately obvious whether the combination of scalar summary values
plus the ability to “drill down” to processed data products, is adequate, or if more com-
plex datatypes are required25.

3.4 Science validation

3.4.1 Drill-down

It should be possible to display catalog data or summary metrics of interest as a function of
positio on the sky for (at least) tracts worth of data (and preferably all sky). When patterns
or pathologies are observed, it should be possible for the user to interactively “drill down” to
investigate their source. For example, this includes plottingmultiple (user selected) quantities
of interest, enabling brushing & linking between them, and the ability to round-trip data to
a Jupyter notebook for further analysis. The tooling should enable the user to investigate
questions such as:

• Why are the colors in this region of the sky systematically offset from the stellar locus?

• Why is the difference between CModel Mags and Psf Mags multimodal?

• ...
25Perhaps equivalent: should the metric-tracking system store pipe_analysis (§2.2.3-style plots, or other inter-

mediate data products, from which summary metric values might be derived, in addition to the metric measure-
ments themselves, or should it be possible to generate these plots on the fly from the output dataset? If the latter,
must the output dataset be preserved indefinitely?

D R A F T 17 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

4 Glossary
CI Continuous Integration. See §2.6.1.
KPM Key Performance Metric. KPMs are a subset of the high-level LSST requirements which

were chosen in LDM-240 to track progress of the DM system towards completion.
The current set as they pertain to the LST Science Pipelines are described in LDM-
502. Note that, being derived from high-level requirements, KPMs in general describe
the performance of the complete LSST system, and not that of the DM subsystem;
it follows that it is impossible to verify all KPMs purely based on code and services
provided by DM.

metric Ameasureable quantity which is used to characterize the performance of some aspect
of the DM system. For example, metrics might include photometric repeatability or
alert production latency.

PDAC Prototype Data Access Center.
QA Quality Assurance.
SST System Science Team.
VCS Version Control System.

References

[DMTR-13], Becla, J., 2015, Qserv Summer 15 Large Scale Tests, DMTR-13, URL https://ls.st/

DMTR-13

[DMTN-085], Bellm, E., Chiang, H.F., Fausti, A., et al., 2018, QA Strategy Working Group Report,
DMTN-085, URL https://dmtn-085.lsst.io,
LSST Data Management Technical Note

[LSE-29], Claver, C.F., The LSST Systems Engineering Integrated Project Team, 2017, LSST Sys-
tem Requirements (LSR), LSE-29, URL https://ls.st/LSE-29

[LSE-30], Claver, C.F., The LSST Systems Engineering Integrated Project Team, 2018, Observa-
tory System Specifications (OSS), LSE-30, URL https://ls.st/LSE-30

[LSE-61], Dubois-Felsmann, G., Jenness, T., 2017, LSST Data Management Subsystem Require-
ments, LSE-61, URL https://ls.st/LSE-61

[SQR-009], Fausti, A., 2017, The SQuaSH metrics dashboard, SQR-009, URL https://sqr-009.

lsst.io

D R A F T 18 D R A F T

https://ls.st/DMTR-13
https://ls.st/DMTR-13
https://dmtn-085.lsst.io
https://ls.st/LSE-29
https://ls.st/LSE-30
https://ls.st/LSE-61
https://sqr-009.lsst.io
https://sqr-009.lsst.io

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM QA Status & Plans DMTN-074 Latest Revision 2018-06-14

[DMTN-057], Findeisen, K., 2017, Integrating Verification Metrics into the LSST DM Stack, DMTN-
057, URL https://dmtn-057.lsst.io,
LSST Data Management Technical Note

[LPM-17], Ivezić, Ž., The LSST Science Collaboration, 2011, LSST Science Requirements Docu-
ment, LPM-17, URL https://ls.st/LPM-17

Ivezic, Z., et al., 2008, ArXiv e-prints (arXiv:0805.2366), ADS Link

[LDM-240], Kantor, J., Jurić, M., Lim, K.T., 2016, Data Management Releases, LDM-240, URL
https://ls.st/LDM-240

[LDM-552], Mueller, F., 2017, Qserv Software Test Specification, LDM-552, URL https://ls.st/

LDM-552

[LDM-502], Nidever, D., Economou, F., 2016, The Measurement and Verification of DM Key Per-
formance Metrics, LDM-502, URL https://ls.st/LDM-502

[LDM-622], Swinbank, J., 2018, Data Management QA Strategy Working Group Charge, LDM-622,
URL https://ls.st/LDM-622

[DMTR-16], Thukral, V., 2017, Qserv Fall 16 Large Scale Tests/KPMs, DMTR-16, URL https:

//ls.st/DMTR-16

D R A F T 19 D R A F T

https://dmtn-057.lsst.io
https://ls.st/LPM-17
http://arxiv.org/abs/0805.2366
http://adsabs.harvard.edu/abs/2008arXiv0805.2366I
https://ls.st/LDM-240
https://ls.st/LDM-552
https://ls.st/LDM-552
https://ls.st/LDM-502
https://ls.st/LDM-622
https://ls.st/DMTR-16
https://ls.st/DMTR-16

	Introduction
	Current Tooling
	Alert Production (AP)
	ap_pipe and ap_verify

	Data Release Production (DRP)
	afwDisplay
	ci_hsc
	Automated static plots with pipe_analysis
	Dynamic ``drill-down'' plots
	Large scale scientific analysis of HSC data

	Science User Interface & Tools (SUIT)
	Firefly

	Science Data Archive & Application Services (DAX)
	Database intgration testing
	Database performance testing
	DAX services
	lsstDebug

	Data Facility (LDF)
	Regular manual reprocessing of HSC data

	Science Quality and Reliability Engineering (SQuaRE)
	Continuous Integration services (Jenkins)
	Unit test framework
	Stack Demo
	lsst.verify
	SQuaSH
	Validation packages
	Hosted Jupyter notebooks

	Requested Functionality
	Developer Support
	Test datasets
	Visualization, plotting and debugging frameworks
	Support for running and debugging at scale
	Notifications and dashboards

	Code quality
	Unit tests
	Integration tests
	Static analysis, code linters, etc

	Metric verification
	Performance analysis
	High-level metric tracking
	Ad-hoc metric calculation and tracking

	Science validation
	Drill-down

	Glossary

